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OBJECTIVE—Atherosclerotic cardiovascular disease is the
leading cause of death among people with diabetes. Generation
of oxidized LDLs and reduced nitric oxide (NO) availability
because of endothelial NO synthase (eNOS) dysfunction are
critical events in atherosclerotic plaque formation. Biochemical
mechanism leading from hyperglycemia to oxLDL formation and
eNOS dysfunction is unknown.

RESEARCH DESIGN AND METHODS—We show that glu-
cose, acting through oxidative stress, activates the transcription
factor Foxo1 in vascular endothelial cells.

RESULTS—Foxo1 promotes inducible NOS (iNOS)-dependent
NO-peroxynitrite generation, which leads in turn to LDL oxida-
tion and eNOS dysfunction. We demonstrate that Foxo1 gain-of-
function mimics the effects of hyperglycemia on this process,
whereas conditional Foxo1 knockout in vascular endothelial
cells prevents it.

CONCLUSIONS—The findings reveal a hitherto unsuspected
role of the endothelial iNOS-NO-peroxynitrite pathway in lipid
peroxidation and eNOS dysfunction and suggest that Foxo1
activation in response to hyperglycemia brings about proathero-
genic changes in vascular endothelial cell function. Diabetes 58:
2344–2354, 2009

C
ardiovascular disease (CVD) is the leading
cause of death of diabetic patients. Type 2
diabetes increases CVD-related morbidity and
mortality by two- to fourfold (1). Unlike micro-

vascular diabetes complications, the benefit of tight
glycemic control on the prevention of macrovascular
complications remains unclear (2), owing possibly to
the contribution of insulin resistance as an independent
risk factor (3,4).

A growing consensus indicates that the adverse effects
of hyperglycemia on diabetes complications are exerted
through a shared pathway of oxidative stress, leading to

oxidative modification of lipid, protein, and DNA; activa-
tion of proinflammatory pathways; DNA damage; and
cellular apoptosis (5). In contrast, the effects of “insulin
resistance” are heterogeneous, primarily because the con-
stellation of events commonly subsumed under this mon-
iker is indeed an admixture of insulin resistance and
excessive insulin sensitivity, at the cellular and organ level
(6).

It is widely held that alterations of endothelial cell
function are early events in atherosclerosis development.
These perturbations include the modification of lipopro-
teins, loss of endothelium-dependent vasodilation (endo-
thelial dysfunction, synonymous to endothelial nitric
oxide synthase [eNOS] dysfunction), and increased ex-
pression of cellular adhesion molecules (7). These lead to
the formation of fatty streaks, consisting of cholesterol-
laden macrophages beneath the endothelium of large
arteries. Several lines of evidence underscore the impor-
tance of oxidative modifications of native LDL and eNOS
function in fatty streak formation (8,9). For example,
macrophages become cholesterol-laden foam cells when
cultured in the presence of oxidized, but not of native, LDL
(10,11). Hyperglycemia has been linked to the generation
of peroxynitrite, a highly potent oxidant that impairs eNOS
activity, and glucose-induced eNOS dysfunction can be
restored by antioxidants (12). However, the mechanisms
by which hyperglycemia and oxidative stress increase
oxLDL and cause eNOS dysfunction remain unclear.

In this study, we sought to identify a pathway linking
diabetes to oxLDL formation and eNOS dysfunction. We
show that the forkhead protein Foxo1 is activated by
glucose and oxidative stress in endothelial cells to pro-
mote inducible NOS (iNOS)-dependent NO/peroxynitrite
generation. The latter increases lipid peroxidation and
causes eNOS dysfunction by disrupting eNOS dimeriza-
tion. We demonstrate that Foxo1 gain-of-function mimics
the effects of hyperglycemia on this process, while condi-
tional Foxo1 knockout in vascular endothelial cells pre-
vents it. The data reveal a seemingly novel mechanism,
whereby iNOS-dependent NO/peroxynitrite generation by
vascular endothelial cells promotes the early changes
associated with the pathogenesis of atherosclerosis in
diabetes.

RESEARCH DESIGN AND METHODS

Measurement of NO and reactive oxygen species/peroxynitrite produc-

tion. We cultured primary human aortic endothelial cells (HAECs) (Lonza) in
EGM-2 (endothelial growth medium-2; Lonzo) and used them between pas-
sages 3 and 5. We determined NO production using the NO-specific fluorescent
dye 4,5-diaminofluorescein diacetate (DAF-2 DA; EMD Biosciences) as de-
scribed elsewhere (13) and reactive oxygen species (ROS)/peroxynitrite
production using 5-(and6)-carboxy 2,7 dichlorodihydrofluorescein diac-
etate (carboxy-H2DCFDA; Invitrogen). HAECs were grown to confluence and
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stimulated with high glucose or H2O2 in chamber slides (Lab-Tek), then
serum-deprived for 2 h in EBM-2 (endothelial basal medium-2) supplemented
with 100 �mol/l L-arginine, loaded with DAF-2 DA (3 �mol/l) or carboxy-
H2DCFDA (10 �mol/l) for 30 min at 37°C and washed three times with EBM-2.
After fixation in 2% paraformaldehyde for 5 min at 4°C, we visualized NO and
ROS/peroxynitrite production under microscope. In some assays, we trans-
duced HAECs with Foxo1-ADA and DBD-Foxo1-ADA adenoviruses (14) 24 h
before the experiment and cultured them with the iNOS inhibitor 1400W (10
�mol/l) for 3 h, or with the eNOS inhibitor L-NAME (100 �mol/l) (Calbiochem)
for 30 min before adding DAF-2DA. We determined the total amount of NOx
(nitrate and nitrite) in phenol-red free DMEM using a Nitric Oxide Quantita-
tion Kit (Active Motif) after a 24-h culture in the presence or absence of NOS
inhibitors. Insulin (1 �mol/l; Sigma-Aldrich) and A23187 (3 �mol/l; EMD
Biosciences) were used to activate eNOS.
RNA isolation and expression studies. We extracted RNA using RNeasy
Mini Kit and RNase-Free DNase Set (Qiagen). For real-time PCR analysis, we
reverse transcribed total RNA using SuperScript II First-Strand Synthesis
System (Invitrogen). Oligonucleotide primer sequences were as follows:

human (h)iNOS, 5�-tcgtggagacgggaaagaagtc-3� and 5�-aagctcatctg
gaggggtaggc-3�;

heNOS, 5�-gaccctcaccgctacaacatcc-3� and 5�-tccacgatggtgactttggcta-3�;
h36B4, 5�-tgctcaacatctcccccttctc-3� and 5�-agacaaggccaggactcgtttg-3�;
hFoxo1, 5�-ttgaattcacccagcccaaact-3� and 5�-gctaccccaggatcaactggtg-3�;
hFoxo3, 5�-tgactgatatggcaggcaccat-3� and 5�-ccgtgctgttaaaggagctggt-3�;
hFoxo4, 5�-tgggctcaatctcacctcttcc-3� and 5�-agaagcacccttctcctgctga-3�;
mouse (m)iNOS, 5�-ctcagcccaacaatacaagatgacc-3� and 5�-tgtggtgaagagt

gtcatgcaaaat-3�;
m36B4, 5�-tgctgaacatctcccccttctc-3� and 5�-tctccacagacaatgccaggac-3�;
mFoxo1, 5�-gggtcctgggccaaaatgtaat-3� and 5�-ggttcatggcagatgtgtgagg-3�;
mFoxo3, 5�-tgaactccttgcgtcagtcacc-3� and 5�-cggtgctagcctgagacatcaa-3�;
mFoxo4, 5�-accacctcctgctgatgtcctc-3� and 5�-atcacagaaaggttggggacca-3�
We performed PCR reactions in triplicate using a DNA Engine Opticon 3

System (MJ Research). Relative mRNA levels were calculated using a standard
curve, with the PCR product for each primer set normalized to 36B4 mRNA
level.
Western blotting. Cells were lysed and aortas were homogenized by
Polytron immediately after dissection in RIPA buffer (150 mmol/l NaCl, 15
NP-40, 0.5% deoxycholate, 0.1% SDS, 50 mmol/l Tris-HCl: pH8.0) containing
protease inhibitor cocktail (Roche). The mixture was then sonicated and
cellular debris were removed by centrifugation. SDS-PAGE and Western
blotting were performed using standard techniques and ECL detection re-
agents (Amersham Bioscience) with anti-HA (12CA5; Boehringer Mannheim),
anti-FLAG (M2; Sigma-Aldrich), anti-Foxo1 (H128; Santa Cruz Biotechnology),
anti-eNOS (sc-653), anti-insulin receptor (InsR, C-19; all from Santa Cruz
Biotechnology), anti-Akt(pS473), anti-Akt, anti-Foxo3, anti-Foxo1(pS253), an-
tiacetyl Foxo (all from Cell Signaling), anti-InsR(pY1158/pY1162/pY1163)
(Abcam), anti-iNOS (clone 6; BD Transduction Laboratories), and anti-actin
(JLA20; Calbiochem) antibodies. SDS-resistant eNOS dimer formation was
determined using low-temperature SDS-PAGE under reducing condition with
anti-eNOS antibody (N-20; Santa Cruz Biotechnology) as described previously
(12).
Transient transfection and luciferase assays. Expression plasmids encod-
ing Foxo1-luciferase reporter gene (3xIgfbp-RE/pGL2 basic) have been de-
scribed (15). Localization of Foxo1-green fluorescent protein (GFP) fusion
protein was determined 48 h after Foxo1-GFP adenovirus infection. Human
iNOS promoter (�3,997 to 89 from the transcription start site) was PCR-
amplified with the following primers: 5�-caagacattcccgtgctgattg-3� and 5�-
catcaaaggtggccgagagatt-3�, and cloned into pGL3 basic luciferase reporter
plasmid (iNOS/pGL3 basic). We cultured human umbilical vein endothelial
cells (HUVECs) to confluence and transiently transfected them with 3xIgfbp-
RE/pGL2 basic, iNOS/pGL3 basic, or pGL3 empty vector using FuGENE HD
(Roche). We transduced cells with Foxo1-ADA or DBD-Foxo1-ADA adenovi-
ruses 6 h after transfection. We carried out reporter assays with a Dual
Luciferase Reporter Assay System (Promega) using Monolight 3010 Luminom-
eter (BD Bioscience). We used plasmid pRL-CMV Renilla luciferase (Promega)
to control for transfection efficiency.
Chromatin immunoprecipitation assays. We performed chromatin immu-
noprecipitation (ChIP) as described previously (15). To amplify the Foxo
consensus binding site of the human iNOS promoter we used the following
primers: 5�-agaagttgcaatgagcagagatcgt-3� and 5�-gcactaggtaagctttggtggaatg-3�.
SiRNA-mediated Foxo knockdown. We transfected confluent HAECs with
Foxo1, Foxo3, and Foxo4 siRNAs, singly or in combination (ON-TARGETplus
SMARTpool, DARMACON), using TransIT-TKO transfection reagent (Mirus
Bio). We determined transfection efficiency with siGLO Red (DARMACON).
LDL oxidation. We transduced confluent HAECs with Foxo1ADA or DBD-
Foxo1ADA adenoviruses and cultured them at 37°C for 16 h. Thereafter, we
incubated HAECs in phenol red-free DMEM supplemented with 0.1% BSA, 100

�mol/l L-arginine, and 100 �g/ml native LDL (Biomedical Technologies), in the
absence or presence of iNOS inhibitor. After 24 h, we collected the medium
and removed cells by low-speed centrifugation. We measured LDL oxidation
products in the supernatant as thiobarbituic acid reactive substances
(TBARS) using a TBARS assay kit (Cayman chemical) and SIN-1 (Sigma-
Aldrich) as positive control. SIN-1 releases NO and superoxide to generate
peroxynitrite.
Viral expression studies. Adenoviruses encoding HA-tagged FoxO1-ADA
(constitutively nuclear), FLAG-tagged DNA binding–deficient (DBD)-Foxo1-
ADA, and GFP-fused Foxo1 have been described previously (14,25). We
transduced HAECs with Foxo1-ADA and DBD-Foxo1-ADA adenoviruses 24 h
before the experiment.
Animal generation and analysis. The Columbia University Animal Care and
Utilization Committee approved all animal experiments (protocol AAAA4669).
Tie2-cre (16) and Foxo1flox mice have been described (17). L1 mice are InsR
transgenic/knockouts that express InsR exclusively in hepatocytes, brain, and
pancreas �-cells (18). Wild-type, Foxo1-null, and floxed alleles were amplified
by PCR with primers 5�-gcttagagcagagatgttctcacatt-3�, 5�-ccagagtctttgtatcag
gcaaataa-3�, and 5�-caagtccattaattcagcacattga-3�. To induce diabetes, we ad-
ministered a single intraperitoneal injection of streptozocin (STZ; Sigma-
Aldrich) (200 mg/kg) in saline, and 2 weeks later, blood glucose values were
measured with OneTouch Ultra system (LifeScan) to determine hyperglyce-
mia. After the mice were killed, we dissected aortas, extracted mRNA, and
collected serum for lipid peroxides measurements.
iNOS immunohistochemistry. Paraffin-embedded serial sections were pre-
pared from the proximal aorta. iNOS was detected using a rabbit polyclonal
antibody (ab15323, 1:100 dilution) (Abcam, Cambridge, MA) after antigen
retrieval in 10 mmol/l citrate buffer with boiling for 10 min. Endothelial cells
were identified with a goat polyclonal antibody against the endothelial marker
PECAM-1/CD31/M-20 (SC-1506, 1:100 dilution) (Santa Cruz Biotechnology,
Santa Cruz, CA) after antigen retrieval in 1 mmol/l EDTA, pH8.0, and steaming
for 20 min. Antigen detection was carried out using the ABComplex/HRP kit
(DAKO) followed by diaminobenzidine staining (DAB, Vector Laboratories).
Sections were counterstained with hematoxylin.
Endothelial cells isolation. Liver and lung were digested in 2 mg/ml
collagenase A (lung) and D (liver) solution (Roche diagnostics) for 45 min,
followed by DNase I treatment (Sigma) for 5 min. Lysates were filtered
through a cell strainer (100 mm and 40 mm) to remove debris. After washing
twice, endothelial cells were enriched by taking the interphase of a 30%
Histodenz (Sigma) and RPMI suspension of cells overlaid after spinning at
1500 � g for 20 min. Cells were further affinity isolated by mouse CD146
(LSEC) MicroBeads (Miltenyi Biotec) for liver and biotin-conjugated anti-
mouse CD31 (BD Pharmingen) and streptavidin-MicroBeads (Miltenyi Biotec)
for lung using MACS cell separation system (Miltenyi Biotec).
Statistical analyses. Values are expressed as means � SE. Analyses of
statistical significance were carried out using two-tailed Student’s t test.

RESULTS

Glucose and oxidative stress promote iNOS-depen-
dent NO and ROS/peroxynitrite generation in
HAECs. NO has a dual effect on endothelial function
(19,20). In physiologic conditions, NO is a potent vasodi-
lator and protects endothelial cells from oxidative damage
(21). In contrast, with oxidative stress, iNOS-derived NO
can react with superoxide to yield peroxinitrite, a highly
reactive oxidant (22), which in turn promotes LDL oxida-
tion (8) and inhibits eNOS-dependent NO production (12).
Incubation of HAECs in medium containing 25 mmol/l
glucose for 48 h increased NO production four- to fivefold
(Fig. 1A), with a concomitant increase of ROS/peroxyni-
trite (Fig. 1B). Incubation with H2O2, an inducer of
oxidative stress, mimicked these effects (Fig. 1C). Mea-
surements of gene expression indicated that both glucose
and H2O2 increased iNOS, but not eNOS mRNA and
protein, whereas nNOS mRNA was undetectable (Fig. 1D
and E). Furthermore, the iNOS inhibitor 1400W, but not
the eNOS inhibitor L-NAME, prevented H2O2- and glucose-
induced NO production (Fig. 1F). These results indicate
that exposure of HAECs to high glucose or oxidative
stress promotes iNOS-dependent peroxynitrite generation
through NO production, a hitherto unrecognized process.
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Increased iNOS expression and lipid peroxidation in
diabetic mice. We investigated whether hyperglycemia,
presumably resulting in oxidative stress, affects endothelial
iNOS mRNA expression in vivo. When mice were rendered
hyperglycemic by administration of STZ, aortic iNOS mRNA
levels rose threefold (Fig. 1G and H). Immunohistochemistry
on aortas isolated from STZ-induced diabetic mice indicated
a selective increase in iNOS immunoreactivity in endothelial
cells (Fig. 1I, first two panels from the left). We expected that
the rise in NO levels in hyperglycemic conditions would
result in peroxynitrite production through ROS, leading to
increased lipid peroxidation (22,23). Accordingly, we ob-

served a twofold increase of lipid peroxides levels (measured
as TBARS) in the plasma of STZ diabetic mice compared
with normoglycemic controls (Fig. 1J).

iNOS activation by hyperglycemia in HAECs and in
mice, with the attendant increase in oxLDL formation,
represents an attractive mechanism to explain the early
stages in the progression of atherosclerosis. Therefore, we
sought to identify the biochemical mechanism underlying
glucose regulation of iNOS in HAECs and in mice.
High glucose and insulin/growth factor withdrawal
induces Foxo1 nuclear translocation. The forkhead
protein Foxo1 integrates hormonal and nutrient cues with
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FIG. 1. iNOS-dependent NO and ROS/peroxynitrite generation in response to high glucose or oxidative stress in HAECs and in mice. A–F: HAECs
were incubated in medium containing 5.5 mmol/l glucose (–), 25 mmol/l glucose (HG) or 25 mmol/l mannitol (Man) for 48 h, or H2O2 (0.15 or 0.5
mmol/l) for 12 h with (E and F) or without (A–D) either iNOS (1400W) or eNOS inhibitors (L-NAME). A, C, and F: Representative images (upper

panels) and calculated relative intensities (lower panels) of NO production using DAF2-DA. B: ROS/peroxynitrite production using carboxy-
H2DCFDA. D and E: iNOS and eNOS protein (upper panel) and mRNA (lower panel) expression. G: Blood glucose, (H) aortic iNOS mRNA
expression, (I) iNOS immunohistochemistry in aortic sections from C57BL/6J mice (first and second panel from the left) and from
Tie2-cre/Foxo1flox/flox and Foxo1flox/flox mice (third and fourth panel from the left), and (J) plasma lipid peroxide levels (TBARS) in STZ-induced
diabetic and saline-treated control mice (n � 6 for each group). The data were obtained two weeks after STZ injection. *P < 0.05; **P < 0.01 by
Student’s t test. (A high-quality digital representation of this figure is available in the online issue.)
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gene transcription (24). We asked whether glucose-in-
duced oxidative stress and insulin/growth factor signaling
affect the subcellular localization of a Foxo1-GFP fusion
protein in HAECs. Under basal conditions (5.5 mmol/l
glucose), we detected Foxo1-GFP in the cytoplasm; after
incubation with increasing glucose concentrations or
H2O2, Foxo1-GFP translocated to the nucleus, as did in
response to insulin/growth factor withdrawal (Fig. 2A). To
study the mechanism of glucose-induced translocation, we
determined Foxo1 phosphorylation and acetylation in

cells grown in different glucose concentrations. We found
that glucose decreased Foxo1 phosphorylation and acety-
lation in a dose-dependent manner (Fig. 2B). These data
are consistent with our prior observations that glucose
causes nuclear translocation of Foxo1 by promoting its
deacetylation (15). Moreover, expression of a Foxo1-
responsive reporter gene increased up to twofold in cells
treated with high glucose or with H2O2 (but not with
mannitol) in a time-dependent manner (Fig. 2C). These
results indicate Foxo1 is activated by elevated glucose
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FIG. 1. Continued.
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levels and oxidative stress, as well as by insulin/growth
factor withdrawal.
Insulin resistance fails to alter Foxo1 phosphoryla-
tion in HAECs and aorta. Although oxidative stress
associated with hyperglycemia is thought to play a patho-
genic role in atherosclerosis, outcome studies have failed
to convincingly demonstrate that tight glycemic control
prevents the macrovascular complications of diabetes (2).
In addition to hyperglycemia, insulin resistance is also
recognized as an independent risk factor for atherosclero-
sis (3,4). Theoretically, one would predict that insulin
resistance in HAECs could also eventuate in increased
Foxo1 activity, by way of reduced Akt-dependent Foxo1
phosphorylation, with increased nuclear retention (25).
We examined this point in cultured cells and in mice.

First, we incubated HAECs in 100 nmol/l insulin over-
night, to induce ligand-mediated receptor downregulation
(26). The expectation was that a commensurate decrease
in Akt and Foxo1 phosphorylation would occur, leading to
increased nuclear Foxo1. The treatment caused a 50%
decrease in InsR content but failed to affect phospho-InsR,
phospho-Akt, and phospho-Foxo1 levels (Fig. 2E). Next,
we investigated Foxo1 phosphorylation in aortas isolated
from mice lacking InsR in all vascular endothelial com-
partments (referred to as L1) (18). Consistent with the
result in insulin-treated HAECs, we detected near-normal
Akt and Foxo1 phosphorylation in L1 mouse aortas (Fig.
2F). These findings can be explained by the presence of
additional growth factor receptors (such as Igf1R) in
HAECs (27), acting to preserve Foxo1 phosphorylation
when insulin signaling is decreased. These data support a
model in which hyperglycemia trumps insulin resistance
as a metabolic cue regulating Foxo1 activity in endothelial
cells.
Foxo1 activation mimics the effects of glucose and
oxidative stress on NO and ROS production. To deter-
mine whether Foxo1 mediates iNOS-dependent NO and
ROS production, we performed gain-of-function experi-
ments in HAECs. Expression of constitutively nuclear
Foxo1 (Foxo1-ADA) dose-dependently increased NO and
ROS production (Fig. 3A–C) and was associated with
increased iNOS but not eNOS expression (Fig. 3D). iNOS
induction by Foxo1ADA was observed only in HAECs
and not in mouse �TC-3 or in human THP-1 cells,
suggesting that the Foxo1 effect on iNOS is specific for
endothelial cells (data not shown). Addition of an iNOS,
but not of an eNOS inhibitor, prevented the effect of
Foxo1ADA (Fig. 3E). Finally, Foxo1 overexpression
increased the levels of stable NO intermediates (NOx) in
the culture medium, an increase that was reversed by
iNOS inhibition (Fig. 3F and G).
Activation of Foxo1 promotes oxidized LDL forma-
tion and impairs eNOS function by disrupting eNOS
dimerization. Peroxynitrite has been shown to increase
oxLDL levels and impair eNOS function, leading to blunted
NO production (8) (12). We examined whether Foxo1
activation affects peroxynitrite production, LDL oxidation,
and eNOS dimer formation in HAECs. We observed a
dose-dependent increase in oxLDL levels in medium of
HAECs transduced with Foxo1ADA (Fig. 4A), which was
preempted by the addition of an iNOS inhibitor (Fig. 4B).
Moreover, Foxo1 impaired eNOS dimer formation, an
effect that was also reversed by the iNOS inhibitor. Glu-
cose also decreased eNOS dimer formation in a dose-
dependent manner, consistent with our hypothesis that
hyperglycemia activates Foxo1 (Fig. 4C). Accordingly,

FIG. 2. Foxo1 activation and insulin receptor phosphorylation in
HAECs and aortas. A: Foxo1-GFP localization in HAECs cultured with
2% FBS (�serum), 25 mmol/l glucose (HG), 0.5 mmol/l H2O2, or serum
withdrawal (�serum). Data are quantified in the lower panel, which
includes a dose-response curve for glucose-induced Foxo1 transloca-
tion. B: Foxo1 phosphorylation and acetylation determined by Western
blotting with antiphospho-Foxo1 (Ser253) and antiacetyl-Foxo1 anti-
bodies in HAECs treated with different glucose concentrations or H2O2

for 24 h. C and D: Foxo1 reporter assays in HUVECs transfected with
3xIgfBP-RE/Luc plasmid and treated with 25 mmol/l glucose (HG),
mannitol (Man), or H2O2 (0.5 mmol/l) for the indicated lengths of time.
E and F: Western blotting analysis of InsR, Foxo1, and Akt expression,
InsRY1158/Y1162/Y1163, Foxo1S253, and AktS473 phosphorylation in HAECs
incubated with 100 nmol/l insulin for 16 h to induce InsR downregula-
tion (E), or in aortas dissected from mice lacking InsR in all cell types
of the arterial wall (L1) (18) (F). *P < 0.05; **P < 0.01 by Student’s t

test. (A high-quality digital representation of this figure is available in
the online issue.)
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eNOS-dependent NO production was decreased, whereas
eNOS-independent basal NO production was increased
(Fig. 4D), in cells transduced with Foxo1ADA. This effect
was reflected in increased ROS production by Foxo1ADA,
but not by eNOS activation (Fig. 4E). Measurements of
stable NO intermediates (NOx) in the culture medium
corroborated this result (Fig. 4F). These data indicate that
Foxo1 activation in endothelial cells increases LDL per-
oxidation and decrease eNOS function through the iNOS-
NO-peroxynitrite pathway.
Foxo1 binding to iNOS promoter is required for NO
induction and LDL oxidation. Foxo1 can regulate gene
expression in a DNA binding-independent manner (14). To
determine whether Foxo1 binding to target DNA is re-
quired for iNOS induction and lipid peroxidation, we
compared the effects of constitutively nuclear, DNA
binding– competent (Foxo1ADA) and – defective (DBD-
Foxo1ADA) Foxo1. DBD-Foxo1ADA failed to affect NO
production and LDL peroxidation (Fig. 5A–C), demonstrat-
ing that DNA binding is required for iNOS induction. This
conclusion is supported by gene reporter assays, indicat-

ing that Foxo1ADA, but not DBD-Foxo1ADA, increased
expression of a reporter gene under the control of human
iNOS promoter (Fig. 5D). Furthermore, ChIP assays
show that Foxo1 binds to a forkhead site of the human
iNOS promoter in intact chromatin isolated from HAECs
(Fig. 5E).
Loss of Foxo1 function blocks iNOS induction in
HAECs and in aortas of diabetic mice. We next asked
whether Foxo1 loss-of-function prevented iNOS induction.
To this end, we transfected HAECs with siRNA constructs
targeting Foxo1, Foxo3, or Foxo4, singly or in combina-
tion. After transfection of phycoerythrin-labeled control
siRNA, we observed red fluorescence in virtually all HAEC
nuclei (Fig. 6A, blue), indicating high efficiency of siRNA
delivery (Fig. 6A). Transfection of Foxo1, Foxo3, or Foxo4
siRNAs led to 92, 87, and 81% decreases in target mRNA
expression, respectively. Cotransfection of the pooled
siRNAs decreased Foxo1, Foxo3, and Foxo4 mRNA by 87,
77, and 82%, respectively (Fig. 6B). In untransfected
HEACs, iNOS expression increased 2.8- and 2.5-fold after
H2O2 and high glucose treatment, respectively. Foxo1
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knockdown blunted the rise of iNOS mRNA and protein in
response to oxidative stress, whereas knockdown of ei-
ther Foxo3 or Foxo4 had no effect (Fig. 6C). These data
indicate that Foxo1 is the main Foxo isoform required for
iNOS activation by oxidative stress.

To provide in vivo evidence for a role of Foxo1 in
mediating the effects of hyperglycemia on iNOS and lipid
peroxidation, we generated vascular endothelial cell–
specific Foxo1 knockout mice (Tie2-cre/Foxo1flox/flox) (Fig.
7A and B). Mice were born at term in Mendelian ratios and
showed no gross or metabolic abnormalities (data not
shown). We rendered them diabetic with STZ and mea-
sured aortic iNOS mRNA and serum lipid peroxides levels.
We detected a 49% decrease of iNOS mRNA and a 32%
decrease of serum lipid peroxide levels (Fig. 7C) in
hyperglycemic Tie2-cre/Foxo1flox/flox mice, compared with
Foxo1flox/flox controls. Immunohistochemical analyses in-
dicated that the STZ-induced increase of iNOS protein was

blunted in Tie2-cre/Foxo1flox/flox mice (Fig. 1I, third and
fourth panel from the left). These results suggest that
Foxo1 activation in diabetic endothelial cells is required
for oxLDL generation.

DISCUSSION

The cardiovascular complications of diabetes represent a
major threat to public health (28,29). Not only does excess
morbidity and mortality for CVD already account for most
of the financial burden of diabetes (28), but this compli-
cation appears to be uniquely resistant to tight glucose
control (2,30). In addition, progress in reducing mortality
from ischemic and nonischemic heart disease with lipid-
lowering drugs is being offset by the soaring rates of
diabetes-related CVD (31). Finally, it is becoming increas-
ingly clear that effects of antidiabeties medications should
be viewed in the context of CVD outcome studies and not
simply of glucose control (32).

The clinical complexity of diabetes-related CVD stems
from the heterogeneity of molecular mechanisms underly-
ing atherosclerotic plaque development, progression, and
eventual rupture. The present work focused on early
events occurring in vascular endothelial cells and more
precisely on the mechanisms by which hyperglycemia and
insulin resistance affect oxLDL generation and endothelial
dysfunction. Our data provide a mechanistic foundation
for recent work, showing that ablation of Akt1, the pre-
dominant Akt isoform in endothelial cells, smooth muscle
cells, and monocytes, leads to severe atherosclerosis in
apolipoprotein E knockout mice, through a mechanism
dependent on endothelial dysfunction (33). We propose
that the next step in this process is activation of Foxo1
(through impaired Akt-dependent phosphorylation), fol-
lowed by iNOS induction, generation of ROS/peroxynitrite,
oxLDL production, impairment of eNOS activity, and
endothelial dysfunction.

Two aspects of the identification of Foxo1 as an effector
of oxidative stress damage in response to hyperglycemia
have noteworthy pathophysiologic implications. First, it is
apparent that Foxo1 is more readily activated in response
to hyperglycemia than to insulin resistance in endothelial
cells. This finding suggests that although insulin-resistant
subjects are predisposed to atherosclerosis and suffer
disproportionately from its consequences independently
of diabetes (3,4), this may occur primarily through oxida-
tive stress, rather than impaired insulin signaling per se.
Indeed, the recent demonstration that increased free fatty
acid levels can bring about oxidative stress in euglycemic
conditions strengthens this conclusion (34). The failure of
insulin resistance to activate Foxo1 (via de-phosphoryla-
tion) could be because of compensatory signals through
IGF-1 receptors, which outnumber insulin receptors on
vascular endothelial cells (27). Moreover, additional sur-
face receptors for growth factors and fluid shear stress
(35) enable vascular endothelial cells to maintain near-
normal Akt phosphorylation through different pathways,
when InsR signaling has been dampened or genetically
ablated, as exemplified in Fig. 2F.

As a second consideration, it is interesting to compare
and contrast the present findings with Foxo1 activation in
response to oxidative stress in pancreatic �-cells (15). In
�-cells, Foxo1 nuclear translocation protects against glu-
cose toxicity, at least in the short term (15); whereas in
vascular endothelial cells, Foxo1 activation boosts their
oxidative capacity through ROS/peroxynitrite generation,
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with attendant lipid peroxidation and eNOS dysfunction.
This observation is consistent with the fact that Foxo1
increases iNOS transcription in endothelial cells but not in
pancreatic �-cells or monocytes (data not shown). The
present data dovetail with scattered evidence in the liter-
ature for a role of iNOS in the adverse metabolic conse-
quences of hyperglycemia in skeletal muscle, adipose, and
liver (36,37). In addition, although in advanced atheroscle-
rotic lesions the role of macrophage-derived iNOS is
quantitatively predominant, histopathology of fetal human
aortic samples shows that LDL and oxLDL are frequently
found in the absence of monocyte/macrophages, but the
opposite is rare (38). Thus, our results suggest that iNOS
activation by Foxo1 drives the generation of plasma lipid
peroxides and endothelial dysfunction often seen in dia-
betes (36,39,40). Furthermore, iNOS has been shown in
most (41–44), but not all studies (45), to promote athero-
sclerosis development. For example, administration of an
iNOS inhibitor prevented atherogenic lesion progression
in atherosclerosis-prone mice (46,47), and was associated

with lower plasma lipid peroxides levels (41,43,44). These
results are consistent with our in vivo data, showing lower
plasma lipid peroxides and aortic iNOS in STZ-induced
diabetic mice lacking Foxo1 in vascular endothelial cells.

In conclusion, our data provide a model biochemical
pathway through Foxo1, linking increased plasma glucose
levels with the early pathophysiologic manifestations of
atherosclerosis in diabetes. When viewed in the context of
prior work, demonstrating that Foxo1 activation underlies
many consequences of insulin resistance in liver and brain
(48–50), this model can be subsumed under a unifying
theory of the independent effects of impaired insulin
action and hyperglycemia on the progression of diabetes
and its complications.
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